1. EIGEN DECOMPOSITION 11

To begin with, we prove the corollary 6 in the previous lecture notes.

Proof of corollary 6 in Lecture notes May 9th. A bounded sequence {u;} in H(l) contains a subsequence
which is convergent strongly in L?. Since the subsequence is also bounded, it contains its own subse-
quence which is convergent weakly in Hé. Namely, there exists a subsequence {u;, } converges weakly
to i) in H(l) and converges strongly to ii; in L?. Let us denote u;, — i1 by vy, and iy — i by v. Then,
the bounded sequence {v,,} converges weakly to 0 in Hé and strongly to v in L?.

Next, we recall a compactly supported rotationally symmetric smooth non-negative mollifier 7 :
R" — R such that [, n(x)dx = 1 and (x) = 0 for |x| > 6 where 6 € (0, 1), and the scaled mollifier
ns(x) = 67"(x/8). Notice that [, ns(x)dx = 1 and n(x) = 0 for |x| > 66. Then, given a function
f: Q — R, we define the §-mollified function f5 € CX°(Ls) by

fo(x) = o S)ns(x — y)dy,

where Q, = {x € R" : |[x — y| < r forsome y € Q}. (We consider f = 0 in Q5\Q.) We observe
that V(f5) = (Vf)s holds for any smooth function f. In addition, since 7 is rotationally symmetric,

f>g € L*(Q) satisfy
/R £(x)godx(x) = /Q SO v = [ wrgayan

Now, we observe that v, € Hj (€as). Hence, for any & € CZ (Qy5) we have

Vs € (Qy5) = /

Qs

Vv, VE + viédx = / Vin(—AE + &)dx = (v, —AE + E)12(0ryy)-
Qs

Passing m — oo yields
0 = (¥, —AE + &) 2,y
Now, we set & = (¥5)s. Then,
0 =7, —A(Vs)s + (Vs)s)r2 = V. —(A¥s)s + (Vs)s)12
= (V5 —AVs + VD2 = /Q —sAVs + |7s|>dx
2

= / |V\_/(5|2 + \175|2dx.
Qos
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Namely, vs = 0 in Q,s. Passing § — 0, we have u = 0 almost everywhere in L. m|

Lemma 1. Given f € H), the following holds in L* sense.

f= Z<fW>L2Wz
i=1

Proof. We define a; = \|w,~|\;22<f, w2, and f = f — ZLI a;w;. Then, for each 1 < j < k, we have

k k
<ka, VWj>L2 = <Vf -V Z awi, VWJ'>L2 = <Vf, VWJ'>L2 — Z a,-<Vw,-, VWj>L2
i=1 i=1
k

= L fowire — Y ailwi, Ywjype = djaj|wjl2, — aj| Vw;|2, = 0.
i=1

Moreover,

k k
fiowpre = = D awiwiye = (fowjype = Y ailwiwiyee = ajlwjl7, — aj|wil2, = 0.
i=1 i=1

Hence, we have f; € X; = span(wy, - -+ ,wy)", and thus

[ |V fil2dx S [ |Vu|?dx

1 = .
[fiPdx = wex [luax — ™

However,
IVF7. = VA + Za wilZy = IV felz + D laiVwil2, = A | fel -
i=1

Therefore, lim A, = +o0 implies that passing k — o yields f; — 0 in L. m|

Theorem 2. Given f € L?, the following holds in L? sense.

f= i <f Wi>L2Wi
i=1

L2

Proof. We recall that Hé is dense in L?. Hence, given f € L?, there exists a sequence {f*} < Hé

which is convergent strongly to f in L? sense. Namely, given € > 0 there exists some large N such



that || f — fV| ;2 < §. Since fy € H}, the previous lemma show that for sufficiently large M

M
HfN - Z HWZ'HI_122<fN, Wl'>Wi”L2 < %
i=1
holds. Therefore,

M
1f = 25 Iwill 2N wiwil 2 < e
i=1

Moreover,
M M M 2
-2 -2 -2
1Y il 2 wiyws = D Iwill 22N s wowilz = Y Iwil 2 = N owipa < If = £V122 < 5
i=1 i=1 i=1
In conclusion,
M
1f = X Iwil 2 wipwil g2 < e
i=1
This completes the proof. m|

2. APPLICATIONS

A direct application of the spectral analysis (the eigen decomposition) is the following theorem.

Theorem 3. Given f € L*(Q), the Dirichlet problem, Au = f in Q and u = 0 in 0Q, has a weak

solution u € Hy(Q)

U= _i<fawi>wi

Ailwil2,

Indeed, the weak solution would be good enough thank to the following regularity theory. (See
Evans’ PDE Ch 6.3 for details.) The following regularity also guarantees the smoothness of egien-

functions.

Theorem 4. Suppose that a;j,b;,c, f € C* (ﬁ) and Q is smooth. Also, a;j is uniformly elliptic,
namely there exists some constant 0 < A < A such that A|£]* < a;;&€; < A|€|* holds for all ¢ € R

Then, a weak solution u € Hé (Q) to the Dirichlet problem, u = 0 on 0Q, to the equation

f= V,'(aijVju) + b;Viu + cu, (D)

is of class C*(Q).



Moreover, we can obtain the following result.

Theorem 5 (Fredholm alternative). Given f € L*(Q), the Dirichlet problem, Au + cu = f in Q with

constant ¢ and u = 0 in 0Q, has

(1) a unique solution if c is not an eigenvalue,

(i1) no solution if c is an eigenvalue and for some eigenfunction w of Aw + cw = 0 we have

(fowprz # 0,

(iii) infinitely many solution if ¢ is an eigenvalue and {f,w);>» = 0 holds for every eigenfunction

wof Aw + cw = Q.

3. THE FIRST EIGENFUNCTION
We observe an interesting property of the first eigenfunction.

Theorem 6 (Courant nodal domain). Let Q be bounded and smooth. Then, an eigenfunction w of the

first eigenvalue A satisfies w # 0 in Q.

Proof. We recall that wt = wifw > 0and w™ = 0isw < 0, and w~ = wt —w. Then, wt € Hé
and Vw' = 0 where {w < 0}. In the same manner, w~ € H} and Vw™ = 0inw > 0.

Without loss of generality, we assume ||wl||;> = 1. Then,

A= VWl = [Vw + 9w |3 = Vw3 + [V |5 = Aw* 7 + w7 = 2.

Therefore, w* are also minimizers of the ratio HVuHiZ / HuHiz in H). Therefore, they are also eigen-

functions. Then, the regularity theory shows that w € C*(Q).

Now, we observe that 4 > 0 implies
AwE = —aw* <0,

in Q, namely w* are superharmonic. Therefore, if w*(x4) = 0 at some point w4 € Q then wt = 0
by the strong maximum principle. Hence, we have w™ = 0 or w~ = 0. Without loss of generality, we

may assume w~ = 0. Then, w is again superharmonic. Hence, w > 0 in Q. m|
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Indeed, we can consider eigenfunctions for more general operators. Then, the Courant nodal do-
main also works. Please, see the practice problem set. We state the Harnack’s inequality for general

linear elliptic equation in what follows. See Evans section 6.4 Theorem 5 for the proof.

Theorem 7 (Harnack). Suppose that a;j, b;,c € Coo(ﬁ), and Q is smooth. Also, a;; is uniformly
elliptic, namely there exists some constant 0 < A < A such that A|&|* < a;;&€; < A|€J? holds for all
& € R Suppose that a solution u € C*(Q) to the elliptic equation V(a;;V ju) + b;Viu + cu = 0 is
non-negative, u = 0 in Q. Then, for each compact set K in Q, there exists some constant C such that

supu < Cinf u.
K K
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