
1. Eigen decomposition II

To begin with, we prove the corollary 6 in the previous lecture notes.

Proof of corollary 6 in Lecture notes May 9th. A bounded sequence tuiu in H1
0 contains a subsequence

which is convergent strongly in L2. Since the subsequence is also bounded, it contains its own subse-

quence which is convergent weakly in H1
0 . Namely, there exists a subsequence tuimu converges weakly

to ū1 in H1
0 and converges strongly to ū2 in L2. Let us denote uim ´ ū1 by vm and ū2 ´ ū1 by v̄. Then,

the bounded sequence tvmu converges weakly to 0 in H1
0 and strongly to v̄ in L2.

Next, we recall a compactly supported rotationally symmetric smooth non-negative mollifier η :

Rn Ñ R such that
´
Rn ηpxqdx “ 1 and ηpxq “ 0 for |x| ě θ where θ P p0, 1q, and the scaled mollifier

ηδpxq “ δ´npx{δq. Notice that
´
Rn ηδpxqdx “ 1 and ηpxq “ 0 for |x| ě δθ. Then, given a function

f : ΩÑ R, we define the δ-mollified function fδ P C8c pΩδq by

fδpxq “
ˆ
Ωδ

f pyqηδpx´ yqdy,

where Ωr “ tx P Rn : |x ´ y| ď r for some y P Ωu. (We consider f “ 0 in ΩδzΩ.) We observe

that ∇p fδq “ p∇ f qδ holds for any smooth function f . In addition, since η is rotationally symmetric,

f , g P L2pΩq satisfy
ˆ
R

f pxqgδdxpxq “
ˆ
Ωδ

ˆ
Ωδ

f pxqgpyqηδpx´ yqdydx “
ˆ

fδpxqgpxqdx.

Now, we observe that vm P H1
0pΩ2δq. Hence, for any ξ P C8c pΩ2δq we have

xvm, ξyH1pΩ2δq
“

ˆ
Ω2δ

∇vm∇ξ ` vmξdx “
ˆ
Ω2δ

vmp´∆ξ ` ξqdx “ xvm,´∆ξ ` ξyL2pΩ2δq
.

Passing m Ñ8 yields

0 “ xv̄,´∆ξ ` ξyL2pΩ2δ
.

Now, we set ξ “ pv̄δqδ. Then,

0 “ xv̄,´∆pv̄δqδ ` pv̄δqδyL2 “ xv̄,´p∆v̄δqδ ` pv̄δqδyL2

“ xv̄δ,´∆v̄δ ` v̄δyL2 “

ˆ
Ω2δ

´v̄δ∆v̄δ ` |v̄δ|2dx

“

ˆ
Ω2δ

|∇v̄δ|2 ` |v̄δ|2dx.
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Namely, vδ “ 0 in Ω2δ. Passing δÑ 0, we have u “ 0 almost everywhere in L2. �

Lemma 1. Given f P H1
0 , the following holds in L2 sense.

f “
8
ÿ

i“1

x f ,wiyL2wi

}wi}
2
L2

.

Proof. We define ai “ }wi}
´2
L2 x f ,wiyL2 , and fk “ f ´

řk
i“1 aiwi. Then, for each 1 ď j ď k, we have

x∇ fk,∇w jyL2 “ x∇ f ´ ∇
k

ÿ

i“1

aiwi,∇w jyL2 “ x∇ f ,∇w jyL2 ´

k
ÿ

i“1

aix∇wi,∇w jyL2

“ λ jx f ,w jyL2 ´

k
ÿ

i“1

aixwi,∇w jyL2 “ λ ja j}w j}
2
L2 ´ a j}∇w j}

2
L2 “ 0.

Moreover,

x fk,w jyL2 “ x f ´
k

ÿ

i“1

aiwi,w jyL2 “ x f ,w jyL2 ´

k
ÿ

i“1

aixwi,w jyL2 “ a j}w j}
2
L2 ´ a j}w j}

2
L2 “ 0.

Hence, we have fk P Xk “ spanpw1, ¨ ¨ ¨ ,wkq
K, and thus

´
|∇ fk|2dx´
| fk|2dx

ě inf
uPXk

´
|∇u|2dx´
|u|2dx

“ λk`1.

However,

}∇ f }2L2 “ }∇ fk `
k

ÿ

i“1

aiwi}
2
L2 “ }∇ fk}L2 `

ÿ

i“1

}ai∇wi}
2
L2 ě λk`1} fk}L2 .

Therefore, lim λn “ `8 implies that passing k Ñ8 yields fk Ñ 0 in L2. �

Theorem 2. Given f P L2, the following holds in L2 sense.

f “
8
ÿ

i“1

x f ,wiyL2wi

}wi}
2
L2

.

Proof. We recall that H1
0 is dense in L2. Hence, given f P L2, there exists a sequence t f ku Ă H1

0

which is convergent strongly to f in L2 sense. Namely, given ε ą 0 there exists some large N such
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that } f ´ f N}L2 ď ε
3 . Since fN P H1

0 , the previous lemma show that for sufficiently large M

} f N ´

M
ÿ

i“1

}wi}
´2
L2 x f N ,wiywi}L2 ď ε

3

holds. Therefore,

} f ´
M

ÿ

i“1

}wi}
´2
L2 x f N ,wiywi}L2 ď 2

3ε.

Moreover,

}

M
ÿ

i“1

}wi}
´2
L2 x f ,wiywi ´

M
ÿ

i“1

}wi}
´2
L2 x f N ,wiywi}

2
L2 “

M
ÿ

i“1

}wi}
´2
L2 x f ´ f N ,wiy

2
L2 ď } f ´ f N}2L2 ď

ε2

9
.

In conclusion,

} f ´
M

ÿ

i“1

}wi}
´2
L2 x f ,wiywi}L2 ď ε.

This completes the proof. �

2. Applications

A direct application of the spectral analysis (the eigen decomposition) is the following theorem.

Theorem 3. Given f P L2pΩq, the Dirichlet problem, ∆u “ f in Ω and u “ 0 in BΩ, has a weak

solution u P H1
0pΩq

u “ ´
8
ÿ

i“1

x f ,wiywi

λi}wi}
2
L2

.

Indeed, the weak solution would be good enough thank to the following regularity theory. (See

Evans’ PDE Ch 6.3 for details.) The following regularity also guarantees the smoothness of egien-

functions.

Theorem 4. Suppose that ai j, bi, c, f P C8pΩq, and Ω is smooth. Also, ai j is uniformly elliptic,

namely there exists some constant 0 ă λ ď Λ such that λ}ξ|2 ď ai jξiξ j ď Λ|ξ|
2 holds for all ξ P R2.

Then, a weak solution u P H1
0pΩq to the Dirichlet problem, u “ 0 on BΩ, to the equation

f “ ∇ipai j∇ juq ` bi∇iu` cu, (1)

is of class C8pΩq.
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Moreover, we can obtain the following result.

Theorem 5 (Fredholm alternative). Given f P L2pΩq, the Dirichlet problem, ∆u ` cu “ f in Ω with

constant c and u “ 0 in BΩ, has

(i) a unique solution if c is not an eigenvalue,

(ii) no solution if c is an eigenvalue and for some eigenfunction w of ∆w ` cw “ 0 we have

x f ,wyL2 ‰ 0,

(iii) infinitely many solution if c is an eigenvalue and x f ,wyL2 “ 0 holds for every eigenfunction

w of ∆w` cw “ 0.

3. The first eigenfunction

We observe an interesting property of the first eigenfunction.

Theorem 6 (Courant nodal domain). Let Ω be bounded and smooth. Then, an eigenfunction w of the

first eigenvalue λ satisfies w ‰ 0 in Ω.

Proof. We recall that w` “ w if w ą 0 and w` “ 0 is w ď 0, and w´ “ w` ´ w. Then, w` P H1
0

and ∇w` “ 0 where tw ď 0u. In the same manner, w´ P H1
0 and ∇w´ “ 0 in w ą 0.

Without loss of generality, we assume }w}L2 “ 1. Then,

λ “ }∇w}2L2 “ }∇w` ` ∇w´}2L2 “ }∇w`}2L2 ` }∇w´}2L2 ě λ}w`}2L2 ` λ}w´}2L2 “ λ.

Therefore, w˘ are also minimizers of the ratio }∇u}2
L2{}u}2L2 in H1

0 . Therefore, they are also eigen-

functions. Then, the regularity theory shows that w˘ P C8pΩq.

Now, we observe that λ ą 0 implies

∆w˘ “ ´λw˘ ď 0,

in Ω, namely w˘ are superharmonic. Therefore, if w˘px˘q “ 0 at some point w˘ P Ω then w˘ “ 0

by the strong maximum principle. Hence, we have w` “ 0 or w´ “ 0. Without loss of generality, we

may assume w´ “ 0. Then, w is again superharmonic. Hence, w ą 0 in Ω. �
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Indeed, we can consider eigenfunctions for more general operators. Then, the Courant nodal do-

main also works. Please, see the practice problem set. We state the Harnack’s inequality for general

linear elliptic equation in what follows. See Evans section 6.4 Theorem 5 for the proof.

Theorem 7 (Harnack). Suppose that ai j, bi, c P C8pΩq, and Ω is smooth. Also, ai j is uniformly

elliptic, namely there exists some constant 0 ă λ ď Λ such that λ}ξ|2 ď ai jξiξ j ď Λ|ξ|
2 holds for all

ξ P R2. Suppose that a solution u P C2pΩq to the elliptic equation ∇ipai j∇ juq ` bi∇iu ` cu “ 0 is

non-negative, u ě 0 in Ω. Then, for each compact set K in Ω, there exists some constant C such that

sup
K

u ď C inf
K

u.
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